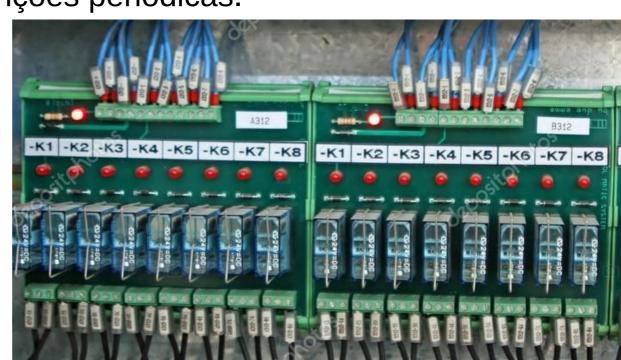
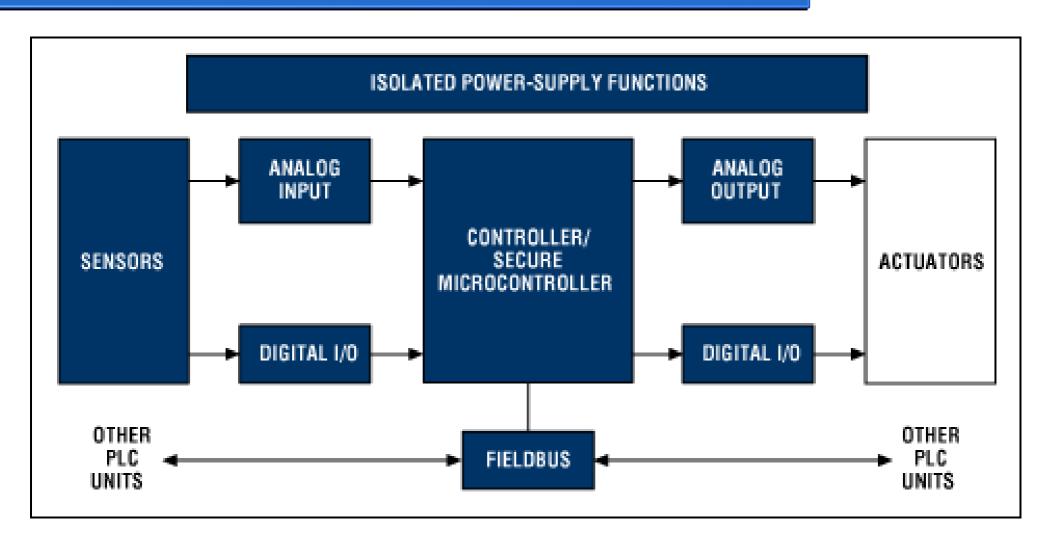
Automação industrial com CLP em rede industrial modbus rs485 controlado e monitorado por SCADA

CLP

 Controlador Lógico Programável (CLP) ou do inglês PLC (Programmable Logic Controller) é um dos controladores mais utilizados na indústria. É projetado para comandar e monitorar máquinas ou processos industriais. Na verdade, ele é um computador especializado em funções de controle e monitoramento de processos. Foram desenvolvidos para substituir os painéis de Relés.



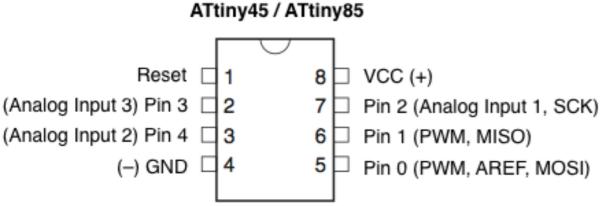
Principais funções do CLP


- Lógica sequencial;
- Lógica Combinacional;
- Intertravamento;
- Comparação;
- Temporização;
- Contagem;
- Controle PID (Proporcional Integral Derivativo);
- Comunicação;
- Segurança.

CLP

- Por serem eletromecânicos, os relés que eram utilizados nos dispositivos de controle apresentavam as seguintes desvantagens:
- Necessidade de instalação de inúmeros relés;
- Complexidade de alteração na sequência de operação;
- Necessidade de manutenções periódicas.
- Mau contato;
- Alto custo;
- Desgastes dos contatos;

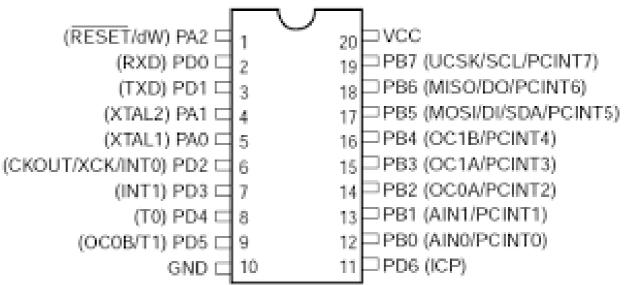
Anatomia do CLP


Microcontrolador

Níveis de uso por microcontrolador:

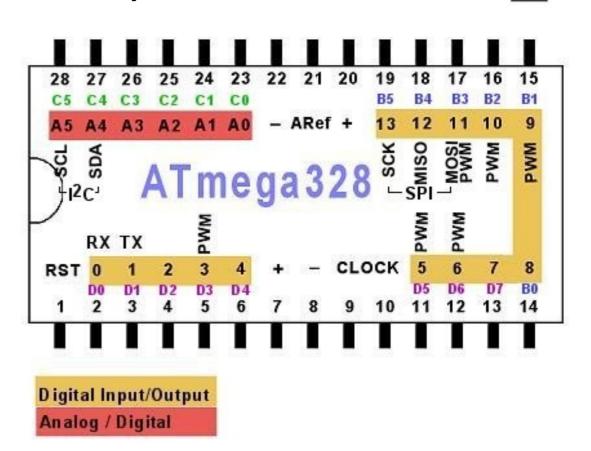
- Controle
- Monitoramento
- Com IHM (Interface Homem Máquina)
- Sistema Operacional em tempo real
- Baseado em fog

CLP Controle


- Microcontrolador 8bits
- 4 portas
- 128bytes Sram
- 1k Flash

Monitoramento

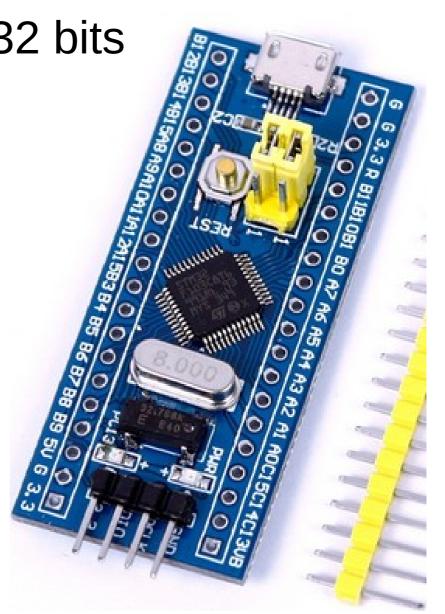
- Microcontrolador 8bits
- 12 portas
- 128bytes SRam
- 1k Flash


ATtiny2313

Com IHM (Interface Homem Máquina)

123A 456B 789C * 0 # D

- Microcontrolador 8bits
- 20 portas (4ihm, 4 lcd)
- 1kbytes SRam
- 2k Flash



Sistema Operacional em tempo real

Microcontrolador ARM 32 bits

• 20 portas (4ihm, 4 lcd)

- 20Kb SRam
- 64Kb Flash

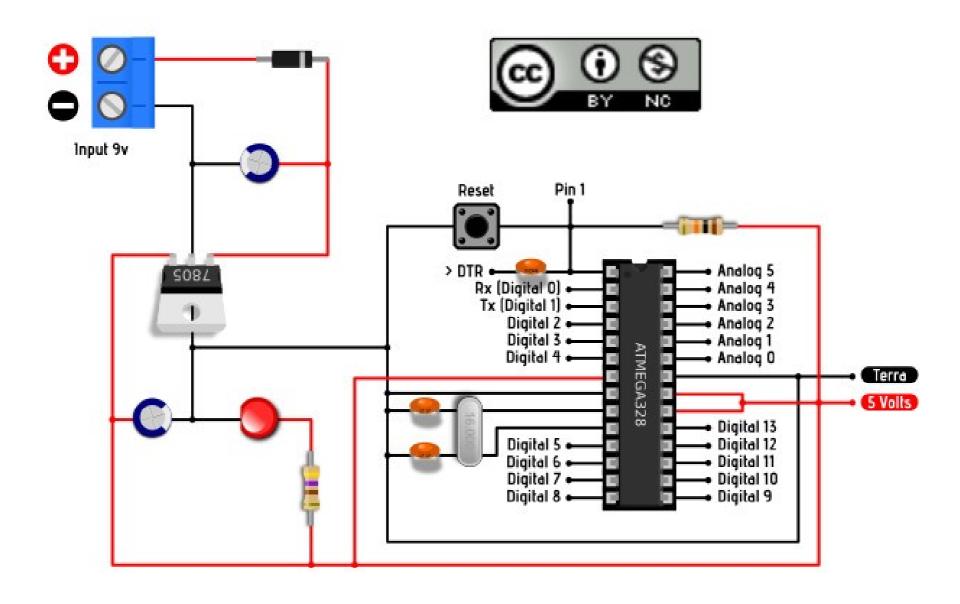
Baseado em fog

Quad Core 1.2GHz64bit

• 1GB RAM

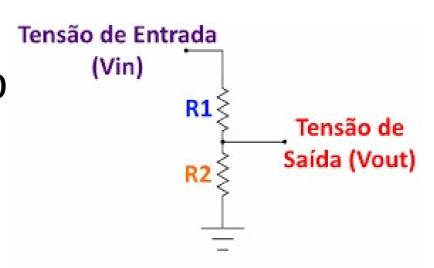
16GB Flash

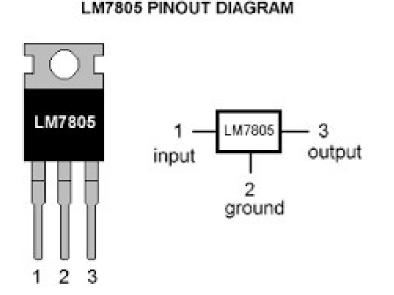
• +SHIELD IO

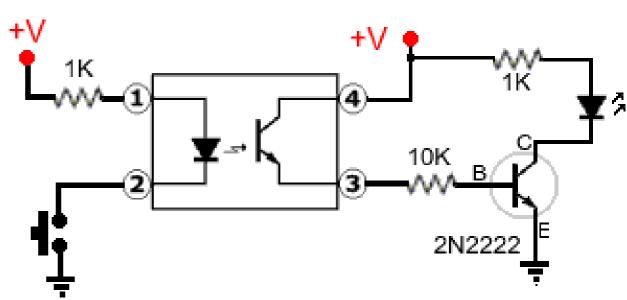

Comparativo de valores Fonte Aliexpress

Microcontrolador	Valor
Arduino Uno	R\$ 25,00
STM32F103	R\$ 6,00
atmega328	R\$ 5,00
attiny	R\$ 2,00
Orange PI	R\$ 77,00

Esquemático da placa

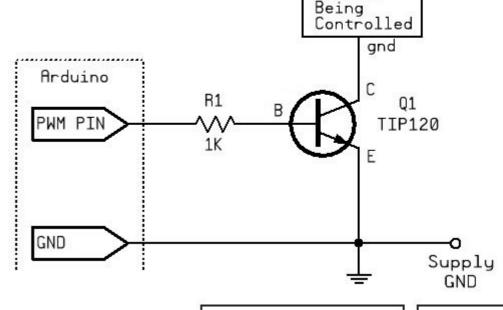

- Fonte de Alimentação
- Entrada (Sensores)
- Saída (atuadores)


Fonte de Alimentação

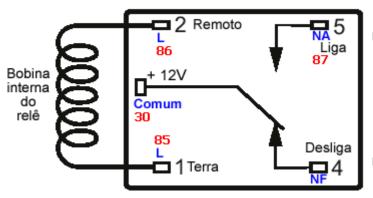


Entrada (Sensores)

- Regulador de tensão
- Resistor divisor de tensão
- Optoacoplador

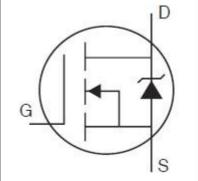


Saída (atuadores)


• Relé (mecânico ou estado sólido)

Tip120

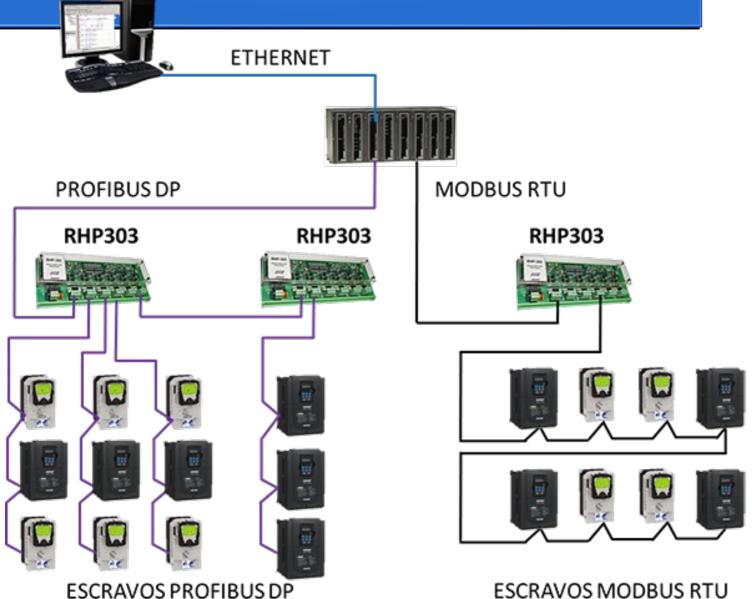
Mosfet(irf640)



Ligado quando a bobina é energizada

Desligado quando a bobina é energizada

Circuit

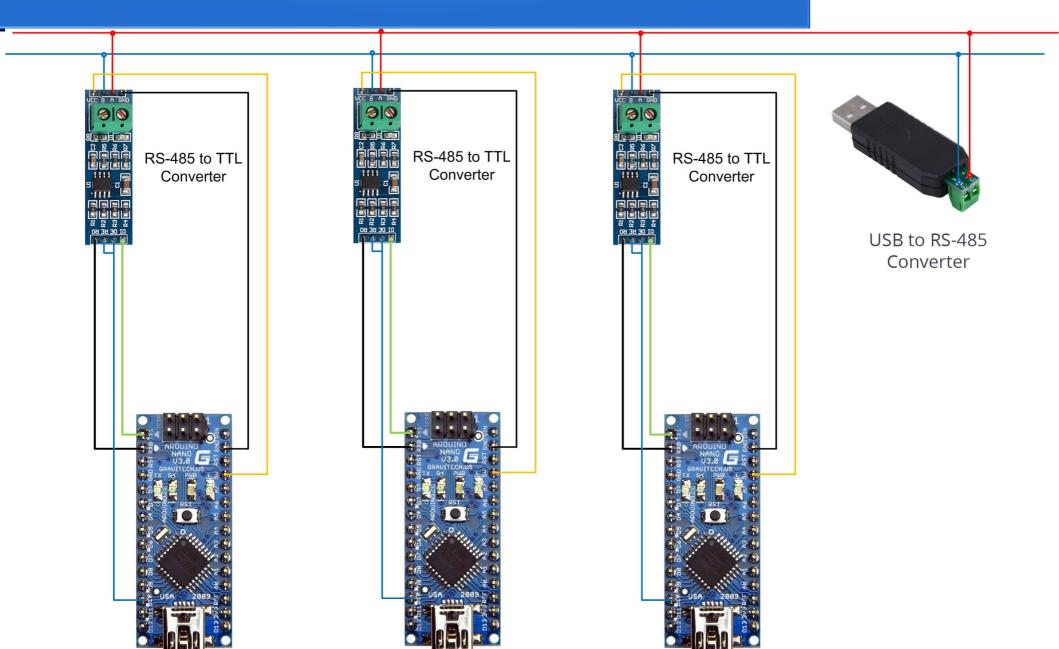

 $V_{\rm DSS} = 200V$

TIP120

 $R_{DS(on)} = 0.15\Omega$

 $I_{\rm D} = 18A$

Desenho básico de uma rede industrial



Meio Físico Rede industrial

- A EIA criou um modelo de padrão de transmissão de dados em meio físico chamado "RS" (Recommended Standard).
- As normas RS232, RS485 e RS422 definem esquemas de transmissão de dados que oferecem soluções robustas para transmitir dados em longas distâncias em ambientes ruidosos. Estas normas não definem qual o protocolo a ser utilizado para a comunicação dos dados, e são adota das como especificação da camada física de diversos protocolos, como, por exemplo, Modbus, Profibus, e muitos outros.

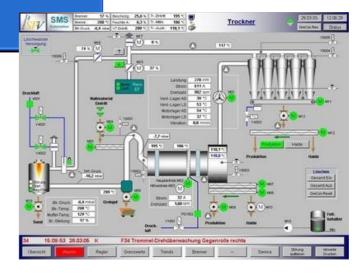
Specifications	RS-232	RS-422	RS-485
Mode of Operation	Single-Ended	Differential	Differential
Total Number of Drivers and Receivers on One Line. One driver active at a time for RS-485 networks	1 Driver 1 Receiver		32 Drivers 32 Receivers
Maximum Cable Length	50 ft (2500 pF)	4000 ft	4000 ft
Maximum Data Rate (40 ft - 4000 ft for RS-422/RS-485)	160 kbits/s (can be up to 1Mbit/s)	10 Mbit/s	10 Mbit/s

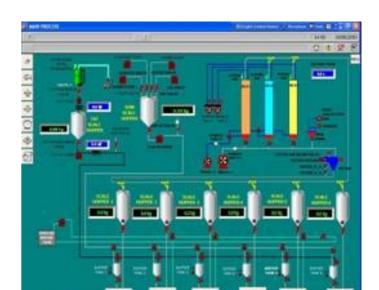
Ligação em uma rede rs485 até 32 dispositivos

Fieldbus

 Fieldbus é um termo genérico empregado para descrever tecnologias de comunicação industrial; o termo fieldbus abrange muitos diferentes protocolos para redes industriais. Tal tecnologia é usada na indústria para substituir o sinal analógico de 4- 20 mA (miliampére).

Supervisório Scada

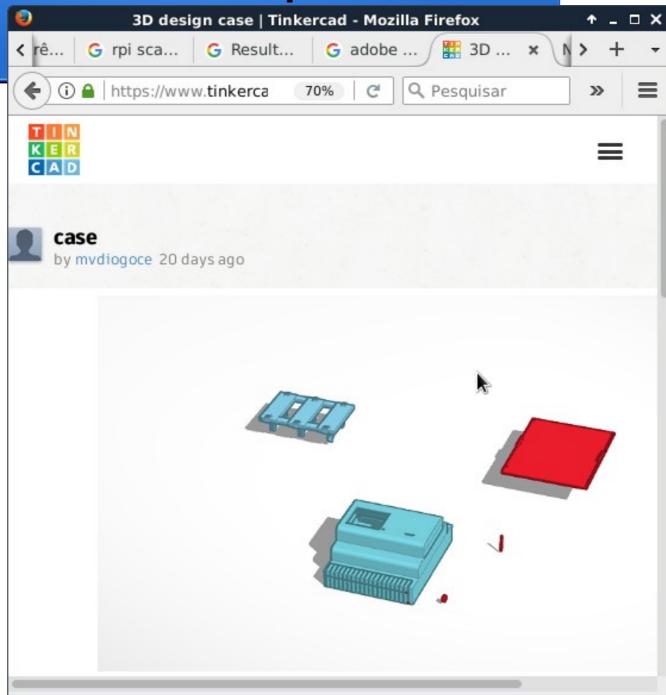

 De forma genérica, um software de supervisão ou software SCADA permite monitorar e operar partes ou todo um processo. Esse processo pode ser de industrial como de manufatura, processo contínuo, batelada, entre outros; ou até mesmo sistemas de serviço público como de tratamento de água, esgoto, transporte, entre outros.


Vantagens de se trabalhar com SCADA

- Comunicação com PLCs/RTUs;
- Gerenciamento de Alarmes;
- Históricos e Banco de Dados;
- Lógicas de programação interna (Scripts) ou controle;
- Interface gráfica;
- Relatórios;
- Comunicação com outras estações SCADA;
- Comunicação com Sistemas Externos / Corporativos (Banco de Dados Oracle, SQL, etc);
- Em alguns casos permite Redundância de Estações;
- Alguns modelos permitem acesso via Web ou Mobile Devices como Smartphones, Tables, etc.

Programas SCADA

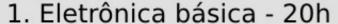
- Elipse E3 da Elipse Software.
- iFIX da General Electric.
- InduSoft Web Studio da InduSoft.
- ProcessView da SMAR.
- ScadaBR (open source) da MCA Sistemas.
- FactoryTalk View SE da Rockwell Automation.
- SIMATIC Wincc da Siemens.
- Vijeo Citect da Schneider Electric.
- Wondeware inTouch da Invensys.



Instalando Scada Mango

- Copiar imagem do orange pi ubuntu lte para cartão micro sd
- Apt-get update
- Apt-get upgrade
- Instalar java da oracle
- Copiar arquivo para /opt/mango
- https://store.infiniteautomation.com/core
- Descompactar
- No bin executar chmod +x *.sh
- ./ma.sh start
- Abrir no navegador http://ip:8080 ou http://192.168.1.9:8080/login.htm
- Senha admin admin

Criar case em impressora


3D

Explore este novo mundo iot

Formação de Especialista em Sistemas Embarcados (200h) de 12x90,00 por 12x70,00

- Circuitos eletrônicos 20h
- 3. Lógica de programação 12h
- 4. Programação em C 16h
- 5. Programação em HTML 12h
- 6. Programação em Python 12h
- 7. IOT com Microcontrolador AVR -
- 12h

- 8. IOT com Microcontrolador ARM 8h
- 9. Processamento digital de sinais 12h
- 10. Sistema operacional para Sistemas embarcados - 32h
- 11. Redes e Protocolo de Comunicação para Sistemas Embarcados - 12h
- 12. Molde e impressão de objetos 3D 8h
- 13. Projetos de Sistemas embarcados 36h

http://www.iplatao.com http://www.fb.com/iplatac +55 85 98629-4224

Perguntas?

• mvdiogoce@gmail.com

Rs485 Waveshare

Pin	Name	Description	
1	RO	Receiver Output	
2	RE	Receiver Output Enable	
		Active LOW	
3	DE	Driver Output Enable	
		Active HIGH	
4	DI	Driver Input	
5	GND	Ground Connection	
6	Α	Driver Output/Receiver Input.	
		Non-inverting	
7	В	Driver Output/Receiver Input.	
		Inverting	
8	V _{CC}	V _{CC} < 5.25V	

Funções

http://www.simplymodbus.ca/faq.htm

Function Code	Action	Table Name	
01 (01 hex)	Read	Discrete Output Coils	
05 (05 hex)	Write single Discrete Output Coil		
15 (0F hex)	Write multiple Discrete Output Coil		
02 (02 hex)	Read	Discrete Input Contacts	
04 (04 hex)	Read Analog Input Register		
03 (03 hex)	Read	Analog Output Holding Registers	
06 (06 hex)	Write single	single Analog Output Holding Register	
16 (10 hex)	Write multiple	Analog Output Holding Registers	

- Biblioteca
- https://code.google.com/archive/p/arduino-modbus-slave/downloads
- Codigo arduino
- https://dereenigne.org/arduino/arduino-modbus-rtu-adc/

•

- Instalando tomcat 7 e java 7 no rpi
- https://www.unixmen.com/install-tomcat-8-5-debian-8/
- localhost:8080/manager/html
- sudo /etc/init.d/tomcat start
- sudo gpasswd -a tomcat dialout
- Rxtxcom.jar pasta java do tomcat